

JOURNÉE TECHNIQUE 2025

AFOCO: 30 ANS D'ENGAGEMENT EN FAVEUR DES MATÉRIAUX ALTERNATIFS

- Vendredi 7 novembre 2025
- Maison des Travaux Publics, Paris
- (9h00 16h00

Méthodologie de caractérisation pour mieux appréhender le comportement réactionnel des cendres volantes de charbon d'issues des stocks historiques

Loïc DANEST
Directeur technique
SURSCHISTE

David BULTEEL
Enseignant Chercheur
IMT NORD EUROPE

CONTEXTE

- ✓ Les cendres volantes utilisées comme addition pour la production de béton conforme à la norme EN 206-1, pour les mortiers, coulis et ciments composés, doivent satisfaire à la norme EN 450-1:2012.
- ✓ La conformité est évaluée selon EN 450-2 et les exigences de marquage CE (Annexe ZA).
- ✓ D'autres paramètres ou exigences peuvent être requis au niveau national
- ✓ Première attestation CE pour SURSCHISTE a été délivrée en 2006.
- ✓ Une importante base de données est disponible pour analyses statistiques.

01234

AnyCo Ltd, PO Box 21, B-1050

12

01234-CPD-00234

EN 450-1:2012

Fly ash for concrete

Fineness Category: N

Declared value of fineness in case of category N: 25 %

Loss on ignition Category: A

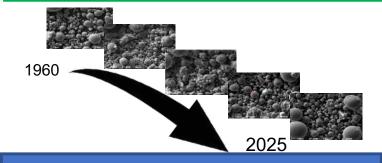
Particle density: 2 300 kg/m³

Dangerous Substance: NL, F2)

Critères d'attentions pour les cendres issues de stocks historiques

- ✓ En France, la réutilisation de cendres issues de stocks pour les applications SCM devient la principale source d'approvisionnement.
- ✓ Objectif: assurer la constance des performances et proposer des produits durables.
- ✓ Exigences techniques : réactivité, maîtrise de la demande en eau, durabilité.
- ✓ Technologies: mélanges, séchage, broyage, classification, séparation du carbone.

Tableau 2 — Propriétés, méthodes d'essai et fréquences minimales d'essais pour les essais d'autocontrôle du producteur ou de son représentant et méthode d'évaluation statistique


1		1 2		4	7	8		
Propriété		Méthode d'essai ^{b c}		Essais d'a		Vérification de conformité o		
			Fréqu	uence minimale d	les essais	Méthode d'évaluation statistique		
						Contrôle par		
			Situation courante	Période d'admission pour une nouvelle cendre volante	Co-combustion d'essai initiale	Mesures ^e	Attributs	
1	Perte au feu	EN 196-2	1/jour d	2/jour d		×		C
2	Finesso	EN 451-2/ EN 933-10	1/jour ^d	2/jour ^d		x		C/D
3	Oxyde de calcium libre	EN 451-1	1/semaine ^g	2/semaine			x 1	Р
4	Oxyde de calcium réactif ^h	EN 196-2	1/mois	2/mois			х	Р
5	Teneur en chlorures	EN 196-2	1/mois	2/mois			х	Р
6	Teneur en sulfate	EN 196-2	1/mois	2/mois			x	Р
7	Masse volumique des particules	EN 1097-7	1/mois	2/mois			х	D
8	Indice d'activité	EN 196-1	2/mois	4/mois			×	Р
9	Stabilité (si exigée)	EN 196-3	1/semaine	2/semaine			×	P
10	Somme des teneurs en silice, alumine et oxyde de fer i	EN 196-2	1/mois	2/mois			×	Þ
11	Silice réactive m	EN 197-1			x			Р
12	Alcalis I	EN 196-2	1/mois	2/mois			×.	Р
13	Oxyde de magnésium ^m	EN 196-2			x			Р
14	Phosphate soluble	Annexe C			×			P
15	Teneur totale en phosphate ^m	ISO 29581-2	1/mois	2/mois			×	p
16	Temps de début de prise ^m	EN 196-3	1/mois	2/mois		х		p
17	Eau nécessaire au gáchage ⁿ	Annexe B	2/semaine	4/semaine		х		р
18	Substances dangereuses et émission de radioactivité ^k	1						

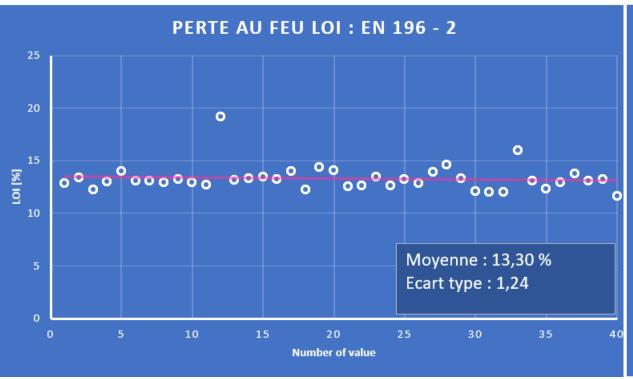
Attention particulière :

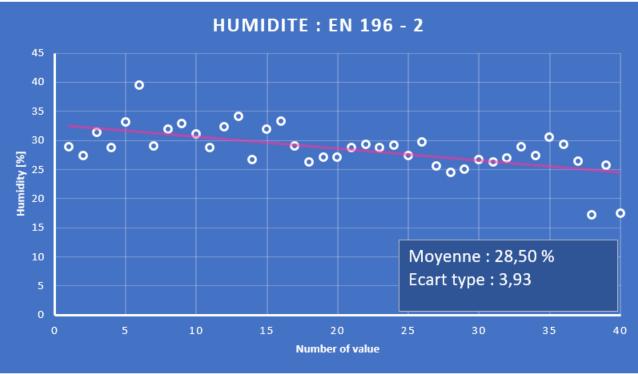
Les caractéristiques des cendres issues des stocks historiques peuvent être influencées par :

- •Le procédé de combustion (charbon local ou importé brûlé dans la même centrale, mais via des chaudières différentes)
- •Les opérations de mise en décharge, qui peuvent s'avérer critique

La chimie reste constante

La réactivité, les performances mécaniques et les propriétés du béton frais peuvent être sujettes à des variations.



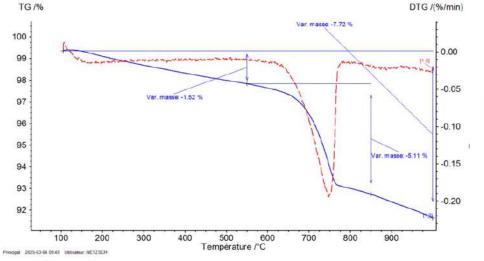


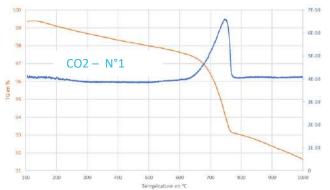
Echantillonnage et suivi d'un stock de 30 000 tonnes ETAPE 1 : controle qualité lors du chargement

Echantillonnage et suivi d'un stock de 30 000 tonnes PREMIERES OBSERVATIONS

Parametre	échantillon individuel 1	Composite 1	Composite 2	Composite 3	Ref. Standard
BASE analyses					
Teneur en eau % sur brut	20,5	22,6	21	20,5	NF EN 15934-A
Masse Volumique g/cm3	1,84	1,82	2,27	1,82	NF EN 169-6
LOI 950 °C % sur sec	12,5	12,5	12,3	12,1	NF EN 196-2
Carbone Organique % sur sec	7,72	8,13	7,39	7,51	NF ISO 10694
CHEMICAL analysis					
Potassium total (en K2O) % sur sec	2	2	2	2,2	ICP - ASTM D6349
Calcium total (en CaO) % sur sec	5,4	6	7,4	6,6	ICP - ASTM D6349
Aluminium total (en Al2O3) % sur sec	23,7	22,4	22,7	22,3	ICP - ASTM D6349
Magnésium total (en MgO) % sur sec	1,5	1,5	1,5	1,5	ICP - ASTM D6349
Fer total (en Fe2O3) % sur sec	6,7	7,3	6,8	7,1	ICP - ASTM D6349
Sodium total (en Na2O) % sur sec	0,7	0,8	0,8	0,9	ICP - ASTM D6349
Silicium total (en SiO2) % sur sec	44,6	43,3	43,4	44,6	ICP - ASTM D6349
Chaux libre %CaO sur sec	<0,1	<0,1	<0,1	<0,1	NF EN 451-1
Sulfate %SO3sur sec	0,75	0,4	0,26	0,11	NF EN 196-2
Chloruress %CI- sur sec	0,02	0,06	<0,01	<0,01	NF EN 196-2

ETUDE DE CAS




Echantillonnage et suivi d'un stock de 30 000 tonnes ETAPE 2 : investigation en laboratoire

Perte au Feu					550°C			1000°C	
-	M creuset	Mts	Mt 550	LOI% 550°C	Moy.	Mt 1000	LOI% 1000°C	Moy.	
	1	32,7466	40,094	39,6915	5,48		39,2266	11,81	
Stockpiles ashes N°1	2	27,2476	36,7831	36,197	6,15	5,96	35,6420	11,97	12,28
	3	31,4982	40,4726	39,9112	6,26		39,3002	13,06	

Perte de masse ATG atmosphère Argon

	105/550°C	550/850°C
Etude de cas N°1	1,52%	5,11%

Echantillonnage et suivi d'un stock de 30 000 tonnes PREMIERES CONCLUSIONS

Composite Sample1	Composite Sample3			
analyse "classique:	s"			
12,5	12,3	12,1 -		
8,13	8,13 7,39			
estigations compléme	entaires			
	5,96			
	12,28			
	1, 52			
	7,72			
Bilan Carbone				
4,37	4,91	4,59		
	5,11	_		
8,13	7,39	7,51		
	7,17			
	analyse "classiques 12,5 8,13 vestigations compléme Bilan Carbone 4,37	analyse "classiques" 12,5 12,3 8,13 7,39 vestigations complémentaires 5,96 12,28 1,52 7,72 Bilan Carbone 4,37 4,91 5,11 8,13 7,39		

→ LOI = C_{CaCO3} + $C_{imbrûl\acute{e}}$ + Autres (eau liée):

$$ightharpoonup$$
 $\mathrm{C} + \mathrm{O}_2 o \mathrm{CO}_2$

 C_{caCO3} : Masse de carbonate de calcium ($CaCO_3$) qui se décompose en oxyde de calcium et Dioxyde de carbone (CO_2)

 $C_{imbrûl\acute{e}}$: Masse de matière organique imbrûlée (carbone qui reste après combustion)

Autres (eau liée): eau liée structurellement dans l'échantillon (ex : eau cristalline dans les minéraux, comme les argiles ou les hydrates)

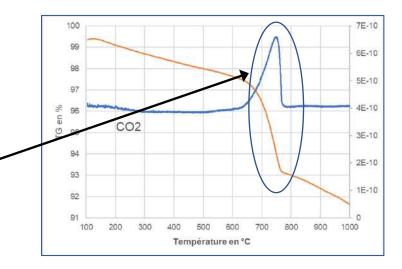
$$ullet$$
 CaCO₃ $ightarrow$ CaO + CO₂

ETUDE ELARGIE A D'AUTRES CENDRES

Echantillons d'origines diverses : dépoussièreur de centrale thermique, co-combustion, cendres de stocks traitées

- CV 1 G: échantillon fraiche production.
- CV 2 F: échantillon fraiche production.
- CV 3 S: cendres de co-combustion après mélange industriel
- CV 4 H: Cendre issue de sécheur
- CV 5 C: Cendre issue de sécheur séparateur

ETUDE ELARGIE A D'AUTRES CENDRES



Echantillons d'origines diverses BILAN CARBONE

	LOI*		LOI from the sample	ATG sous Ar - 3K/min			COT Bilan CA		CARBONE	ARBONE	
	LOI 550°C	LOI 1000°C	NF EN 196-2	550°C	1000°C	550-850 °C	%	Carbonates	Cunburn	Other	
CV 1 G Direct centrale thermique	1,01	1,62	1,48	0,48	2,15	0,6					
CV 2 F Direct centrale thermique	3,37	4,35	4,5	0,18	1,64	0,4	3,8	0,4	3,8	0,3	
CV 3 S Co- combustion	2,71	4,1	4,51	0,17	3,01	0,9	2,9	0,9	2,9	0,71	
CV 4 H sécheur - stock	2,97	6,59	6,67	0,66	2,09	0,75	5,51	0,75	5,51	0,41	
CV 4 C sécheur - séparateur Stock	3,45	7,35	7,3	0,69	2,34	0,9	3,75	0,9	3,75	2,65	
STOCK Etude cas	5,96	12,28	12,43	1,52	7,72	5,11	7,75	5,11	7,75	-0,43	

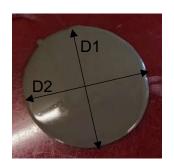
[✓] La mesure de la perte au feu (EN 196-2) est *la méthode de référence* pour les exigences EN 450 et EN 197-1.

- ✓ Pour estimer le carbone non brûlé, la méthode COT (carbone organique total) est préférable.
- ✓ La LOI inclut également les carbonates, l'eau liée et d'autres composants.

^{*} Analyse réalisée par CERI MF

ETUDE SUR LA DEMANDE EN EAU : essai Mini-Cône

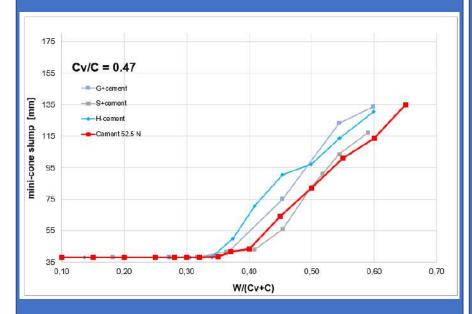
Description du mode opératoire

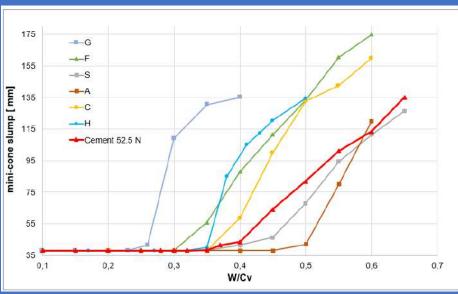

✓ Préparation :

- Homogénéiser à sec les composants dans un malaxeur microbar, pour une masse totale de 100 g.
- ❖ Ajouter l'eau tout en mélangeant à vitesse lente.
- Mélanger à vitesse lente pendant 1 minute, puis arrêter 30 secondes afin de racler les parois du bol.
- ❖ Reprendre ensuite le mélange à grande vitesse pendant 1 minute (en utilisant les mêmes vitesses que celles spécifiées dans la norme EN 196-1).

✓ Mini-cône :

- Transférer la pâte d'un seul tenant dans le mini-cône, disposé sur une plaque de verre préalablement humidifiée.
- Soulever le cône verticalement.
- Mesurer l'étalement selon deux diamètres (D1/D2).


ETUDE SUR LA DEMANDE EN EAU : essai Mini-Cône


Présentation des résultats

Slump CV + Ciment

→ le ciment influe majoritairement la demande en eau

Slump CV

→la demande en eau dépend de la cendre volante

Commentaires:

- La mesure de la demande en eau d'une pâte cendre volante/ciment est principalement influencée par le ciment.
- Le test au mini-cône réalisé sur une pâte composée uniquement de cendres volantes devrait être privilégié pour évaluer le comportement des cendres vis-àvis de la demande en eau.
- La demande en eau intrinsèque des cendres volantes n'est pas dépendante de leur teneur en carbone imbrûlé

Conclusions

❖ La mesure de la perte au feu (LOI) n'est pas pertinente pour l'évaluation du carbone imbrûlé ; la détermination du carbone organique total (COT) est préférable. Le CEN/TC 104/WG 4_N243 propose l'introduction de nouvelles caractéristiques dans la norme EN 450-1 :

« Carbone organique selon la norme ISO 10694 : En raison des réactions d'hydratation et de carbonatation se produisant durant le stockage, les résultats de la perte au feu (LOI) pour les cendres volantes stockées peuvent conduire à une mauvaise interprétation de la teneur résiduelle en carbone. Par conséquent, ces cendres volantes devraient uniquement être analysées de manière fiable à l'aide de la méthode d'essai du carbone organique (C organique), qui constituerait une nouvelle caractéristique, la méthode actuelle n'étant utilisée qu'à titre de procédure de référence. »

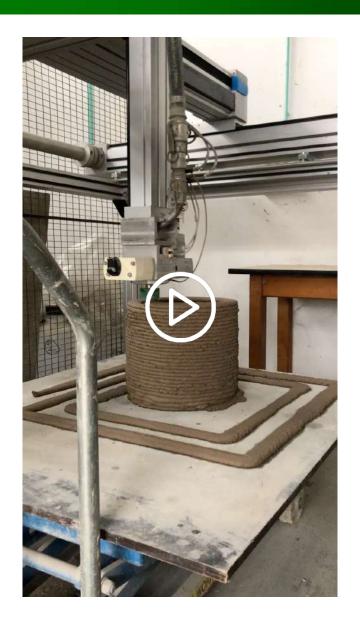
- ❖ Pour l'étude de *la demande en eau*, le test d'affaissement *au mini-cône réalisé sur une pâte composée exclusivement de cendres volantes doit être privilégié*. Les essais intégrant du ciment masquent le comportement intrinsèque des cendres.
- ❖ La demande en eau n'est pas directement influencée par la teneur en carbone imbrûlé. D'autres paramètres doivent être pris en considération, notamment les caractéristiques physiques telles que la granulométrie, morphologie et la surface spécifique.

Perspectives

- ❖ De nouvelles études sont actuellement menées afin de mieux cerner les paramètres influençant la réactivité des cendres volantes dans le béton.
- L'ensemble des procédés industriels disponibles sera intégré à l'analyse afin de garantir la pertinence des résultats pour l'application pratique.
- L'accent est mis sur le développement de solutions favorisant les circuits courts et la réduction de l'empreinte carbone, conformément aux objectifs de durabilité de cette recherche.

Perspectives:

Emploi des CV et autres matériaux alternatifs pour la formulation d'encres cimentaires bas carbone pour l'impression 3D béton


Cofinancé par l'Union Européenne Medegefinancierd door de Europese Unie

France - Wallonie - Vlaanderen

- État frais :
 - Pompable
 - Extrudable
 - Constructible
- État durci :
 - Résistances
 - Retrait
 - Durabilité

Perspectives:

Emploi des CV et autres matériaux alternatifs pour la formulation de liants bas carbone pour le traitement de sols pollués aux métaux lourds

Cofinancé par l'Union Européenne Medegefinancierd door de Europese Unie

France - Wallonie - Vlaanderen

- Stabilisation :
 - Piégeage des métaux lourds
- Solidification:
 - Amélioration des caractéristiques géotechniques des sols pollués

DepolLowC

MERCI POUR VOTRE ATTENTION

David BULTEEL

david.bulteel@imt-nord-europe.fr

Loïc DANEST

loic.danest@surschiste.com

