

JOURNÉE TECHNIQUE 2025

AFOCO: 30 ANS D'ENGAGEMENT EN FAVEUR DES MATÉRIAUX ALTERNATIFS

- Vendredi 7 novembre 2025
- Maison des Travaux Publics, Paris
- (9h00 16h00

Nouveaux liants et nouvelles additions Méthodologie d'étude et applications FD P18-484

Rachida IDIR
Chercheur
CEREMA

Martin CYR
Professeur des Universités
LMDC TOULOUSE

Loïc DIVET

Consultant

LDIVET CONSEIL

Pourquoi de nouveaux liants et de nouvelles additions pour béton?

Contexte

Pacte Vert européen - trajectoire

- Réduction de 55 % des émissions de gaz à effet de serre d'ici 2030 par rapport aux niveaux de 1990
- Atteinte de la neutralité carbone d'ici 2050

Stratégie Nationale Bas Carbone en France

Réglementation avec la RE 2020 pour les constructions neuves

Contexte

Pacte Vert européen - trajectoire

- Réduction de 55 % des émissions de gaz à effet de serre d'ici 2030 par rapport aux niveaux de 1990
- Atteinte de la neutralité carbone d'ici 2050

Stratégie Nationale Bas Carbone en France

Réglementation avec la RE 2020 pour les constructions neuves

Qu'est-ce qu'un nouveau liant?

- Tout ce qui n'est pas du ciment Portland pur → CEM II, CEM III, CEM IV, CEM V, CEM VI
- Ce qui est hors EN 197-1 (voire EN 197-5)
- \rightarrow CAC, CSA, CSS
- Ce qui n'est pas un ciment normalisé
 - → Liants ternaires/quaternaires
 - → Liants à base de sous-produits ou de matériaux naturels
 - → Liants alcali-activés/géopolymères

Comment être en mesure d'utiliser rapidement et sécuritairement ces nouveaux liants et nouvelles additions (solutions)?

Même niveaux de confiance et performance que les matériaux traditionnels!

Vers l'utilisation sécuritaire de nouveaux liants et nouvelles additions

FD P18-484 - Guide d'élaboration d'un dossier technique pour évaluer un nouveau liant ou une nouvelle addition

Groupe d'experts

- Plus de 50 membres experts
- Cinq sous-groupes de travail
- Responsables: L.Divet, M.Cyr

Objectif:

- Développer une **méthodologie** dans le but de réaliser des <u>évaluations techniques harmonisées et fiables</u>
- Texte d'appel du fascicule dans NF EN 206/CN

Présentation du FD P18-484

« Le développement de nouveaux liants et la diversification des types d'additions doivent se faire avec des règles techniques adaptées et robustes pour garantir les exigences fondamentales du règlement produits de construction. »

FD P18-484

1 Domaine d'application

L'objectif de ce document est de déterminer les éléments attendus en vue de l'évaluation d'un nouveau liant et d'une nouvelle addition, non couverts par une norme référencée dans la norme NF EN 206+A2/CN, destinés à la fabrication de béton ayant des propriétés d'usage attendues conformément à la norme NF EN 206+A2/CN. Le présent document peut entre autres faciliter l'insertion dans le contexte normatif (norme NF EN 206/CN en particulier) de nouvelles additions ou de nouveaux liants.

Présentation du FD P18-484

Principe du FD P18-484

Description d'une méthodologie pour constituer un dossier technique

Pour 3 finalités possibles :

MODI

- La rédaction d'une nouvelle norme produit
- L'intégration d'une nouvelle norme produit dans la norme béton NF EN 206/CN
- L'obtention d'avis ou d'agréments techniques après validation par un organisme compétent

ETPM, ATEx, ATec...

Démarche

Classification permettant d'ajuster le niveau d'exigence et d'essais en fonction du degré d'innovation des nouveaux matériaux

Classification des nouveaux liants

Classification des nouvelles additions

Catégorie 1

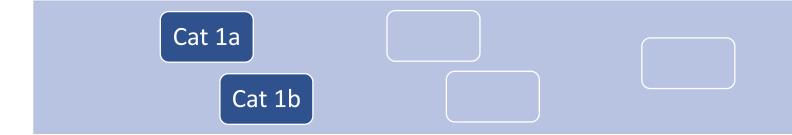
Nouvelle combinaison de constituants principaux traditionnels

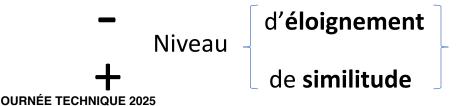
Constituant défini dans les normes ciments

Pouzzolanes naturelles
Pouzzolanes naturelles calcinées
Schiste calciné

Norme-produit

Additions calcaires


Laitier de haut fourneau


Cendres volantes

Additions siliceuses

Fumée de silice

Métakaolin

avec des ciments actuellement normalisés

Catégorie 1

Nouvelle combinaison de constituants principaux traditionnels

1a

≥ 20% de clinker Portland

1b

< 20% de clinker Portland

Constituant défini dans les normes ciments

Pouzzolanes naturelles
Pouzzolanes naturelles calcinées
Schiste calciné

Norme-produit

Additions calcaires


Laitier de haut fourneau

Cendres volantes

Additions siliceuses

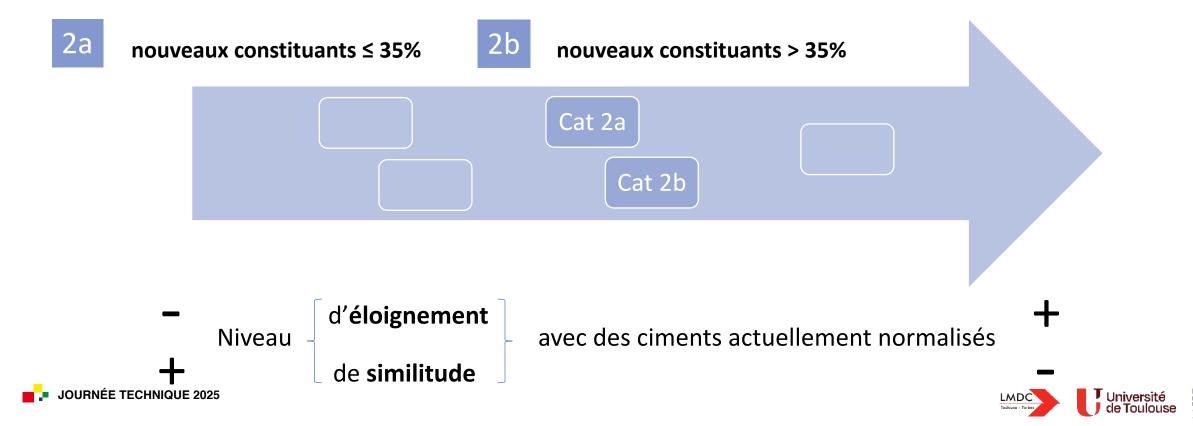
Fumée de silice

Métakaolin

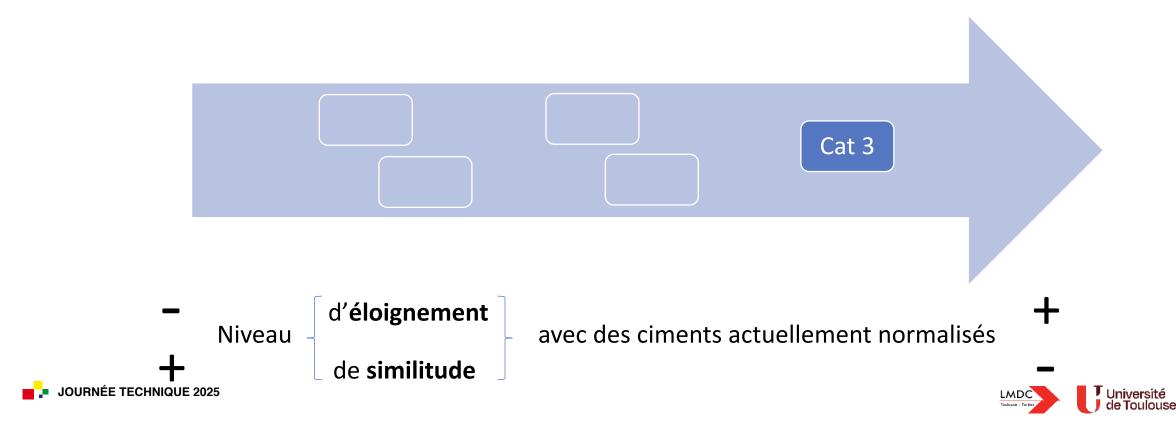
d'éloignement
Niveau

de similitude

avec des ciments actuellement normalisés



Catégorie 2


- Liant hydraulique analogue à des types de ciment définis dans des normes existantes
- Un ou plusieurs constituants non traditionnels ne se trouvant pas dans les catégories 1, mais proche de constituants traditionnels connus

Catégorie 3

- Liant hydraulique ou non s'écartant sensiblement des types définis dans des normes existantes
- Par exemple produit avec un nouveau type de clinker ou addition, basé sur des phases/principes physicochimiques différents

Hydratation basée sur formation d'hydrates cimentaires connus

En résumé				J	1
Liant	Catégorie 1a	Catégorie 1b	Catégorie 2a	Catégorie 2b	Catégorie 3
Constituant traditionnel	$K \ge 20\%$ Ou $K \ge 5\% \text{ et}$ $LHF \ge 85\%$	K < 20%	Pas de restrictions sur les proportions	Pas de restrictions sur les proportions	Pas de restrictions sur les proportions

Hydratation basée sur formation d'hydrates cimentaires connus

En résumé					1
Liant	Catégorie 1a	Catégorie 1b	Catégorie 2a	Catégorie 2b	Catégorie 3
Constituant traditionnel	K ≥ 20% ou K ≥ 5% et LHF ≥ 85%	K < 20%	Pas de restrictions sur les proportions	Pas de restrictions sur les proportions	Pas de restrictions sur les proportions
Constituant non traditionnel assimilable à un constituant traditionnel	Non autorisés	Non autorisés	Somme de constituants non traditionnels ≤ 35%	Somme de constituants non traditionnels > 35%	Pas de restrictions sur les proportions

Hydratation basée sur formation d'hydrates cimentaires connus

En résumé				l.	1
Liant	Catégorie 1a	Catégorie 1b	Catégorie 2a	Catégorie 2b	Catégorie 3
Constituant traditionnel	K ≥ 20% ou K ≥ 5% et LHF ≥ 85%	K < 20%	Pas de restrictions sur les proportions	Pas de restrictions sur les proportions	Pas de restrictions sur les proportions
Constituant non traditionnel assimilable à un constituant traditionnel	Non autorisés	Non autorisés	Somme de constituants non traditionnels ≤ 35%	Somme de constituants non traditionnels > 35%	Pas de restrictions sur les proportions
Constituant non traditionnel non assimilable à un constituant traditionnel	Non autorisés	Non autorisés	Non autorisés	Somme de constituants ≤ 35%	Pas de restrictions sur les proportions

Catégorie 1

Addition obtenue par mélange d'additions normalisées ou de constituants principaux des ciments

OURNÉE TECHNIQUE 2025

Constituant défini dans les normes ciments

Pouzzolanes naturelles
Pouzzolanes naturelles calcinées
Schiste calciné

Norme-produit

Additions calcaires

Laitier de haut fourneau

Cendres volantes

Additions siliceuses

Fumée de silice

Métakaolin

Cat 1

d'éloignementde similitude

avec des additions actuellement normalisés

Catégorie 2

Addition (ou mélange d'additions) non normalisée, proche d'additions connues

Exemples non exhaustifs

Verre broyé

Pouzzolanes naturelles activées

Laitier d'aciérie de convertisseur

Cendres de co-combustion

Cendres de boues de papier calcinées

Cat 2

Niveau

d'éloignement

de similitude

avec des additions actuellement normalisés

Catégorie 3

OURNÉE TECHNIQUE 2025

- Addition ne rentrant pas dans les catégories 1 et 2
- Peut concerner d'autres ajouts finement divisés

Exemples non exhaustifs

MIOM broyés

Cendres de boues de station d'épuration

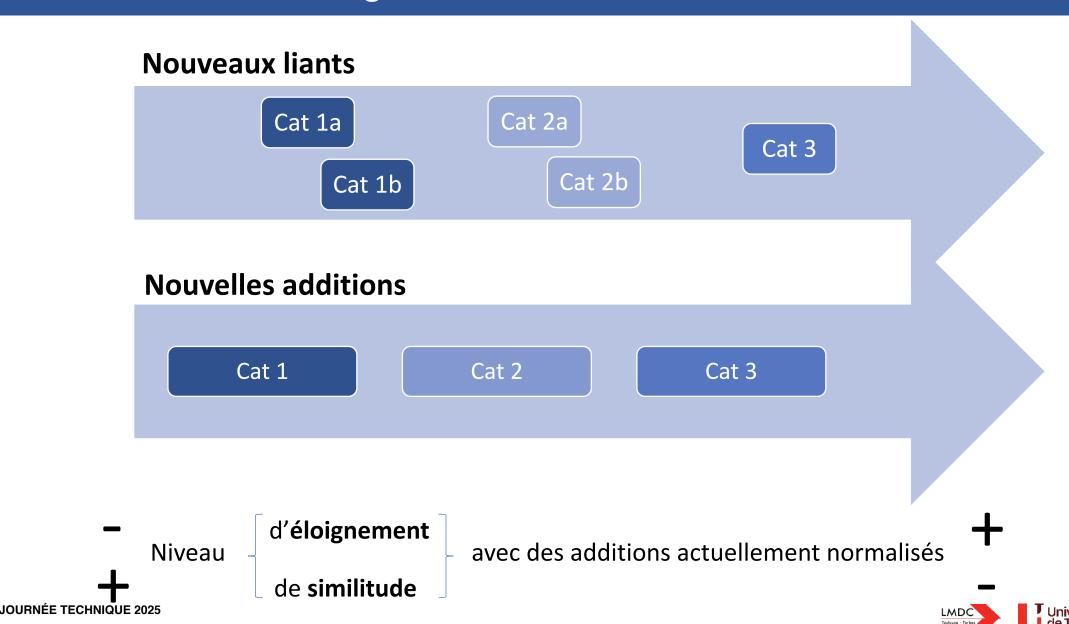
Laitier d'aciérie de four électrique

Résidus issus de traitement de la bauxite

Argile crue

Cat 3

avec des additions actuellement normalisés



Avant une qualification, choix de la catégorie en fonction du niveau d'éloignement

Stratégie de la qualification

Structure du FD P18-484 - Stratégie d'étude des nouveaux liants et de nouvelles additions

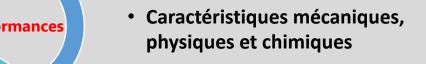
Spécifie les informations techniques attendues concernant la caractérisation d'un nouveau liant ou d'une nouvelle addition

Propriétés intrinsèques des nouveaux liants et de des nouvelles additions

SG1

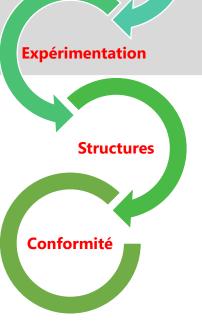
Rachida Idir

SG2


François Cussigh


SG3

Laure Regnaud


SG4

Stéphanie Bondoux

- Impacts potentiels sur l'environnement et la santé
- **Expérimentation à échelle** industrielle

Environnement

Durabilité

Structure du FD P18-484 - Stratégie d'étude des nouveaux liants et de nouvelles additions

Spécifie les informations techniques attendues concernant la caractérisation d'un nouveau liant ou d'une nouvelle addition

Propriétés intrinsèques des nouveaux liants et de des nouvelles additions

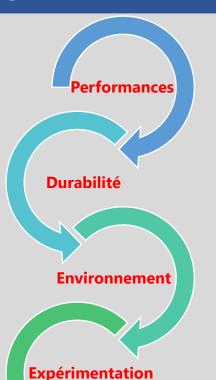
SG1 Rachida Idir

SG2

François Cussigh

SG3

Laure Regnaud


SG4

Stéphanie Bondoux

Propriétés liées à l'usage dans les structures

SG5

Jean-Michel Torrenti

 Caractéristiques mécaniques, physiques et chimiques

Caractéristiques liées à la durabilité

 Impacts potentiels sur l'environnement et la santé

Expérimentation à échelle industrielle

 Propriétés liées à leur usage dans les structures

Structures

Structure du FD P18-484 - Stratégie d'étude des nouveaux liants et de nouvelles additions

Spécifie les informations techniques attendues concernant la caractérisation d'un nouveau liant ou d'une nouvelle addition

Propriétés intrinsèques des nouveaux liants et de des nouvelles additions

SG1

Rachida Idir

SG2

François Cussigh

SG3

Laure Regnaud

SG4

Stéphanie Bondoux

 Caractéristiques mécaniques, physiques et chimiques

Caractéristiques liées à la durabilité

 Impacts potentiels sur l'environnement et la santé

Expérimentation à échelle industrielle

Propriétés liées à l'usage dans les structures

SG5 Jean-Michel Torrenti

Structures

 Propriétés liées à leur usage dans les structures

Maintien des performances dans le temps

Durabilité

Environnement

Expérimentation

 Contrôle des performances du nouveau produit, du point de vue de sa qualité et de sa régularité

Essais à effectuer selon la catégorie

Evaluations des nouvelles additions

Catégorie 1	Catégorie 2	Catégorie 3
-------------	-------------	-------------

Evaluations des nouveaux liants

Catégories 1a et 1b	Catégories 2a et 2b	Catégorie 3		
Evaluation des performances mécaniques, physiques et chimiques				
Evaluation des caractéristiques liées à la durabilité				
Propriétés liées à l'usage dans les structures				
	Evaluation de l'impact environnemental et sanitaire			
		Expérimentation à échelle industrielle		

Exemples d'application du FD P18-484

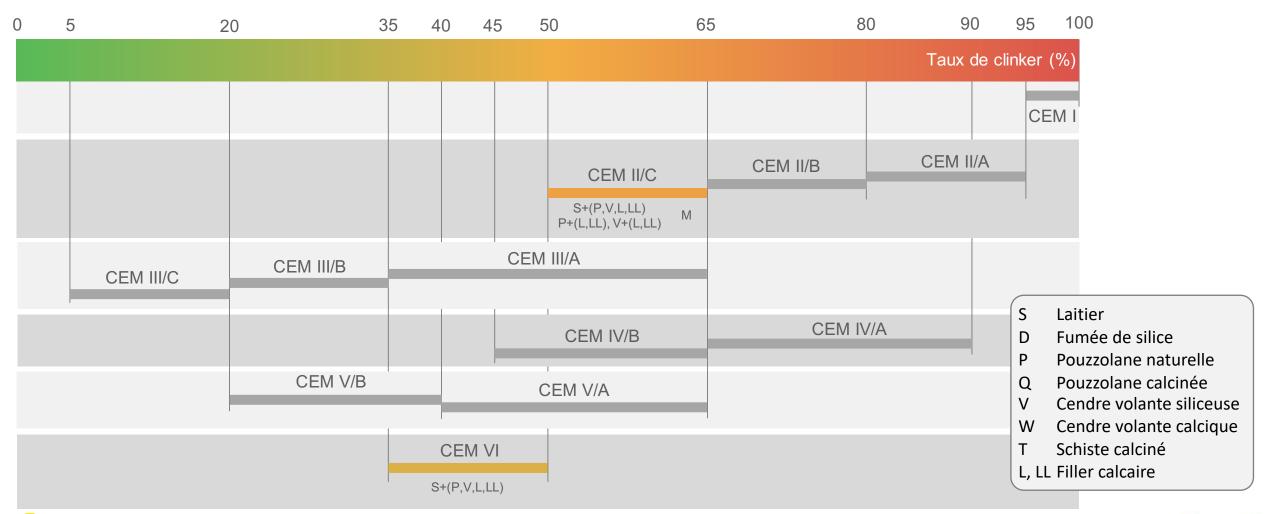
Cas 1 : réduire la quantité de clinker en jouant sur les mélanges de constituants reconnus

Liant

Nouvelle combinaison de constituants reconnus

Addition

Mélange d'additions normalisées

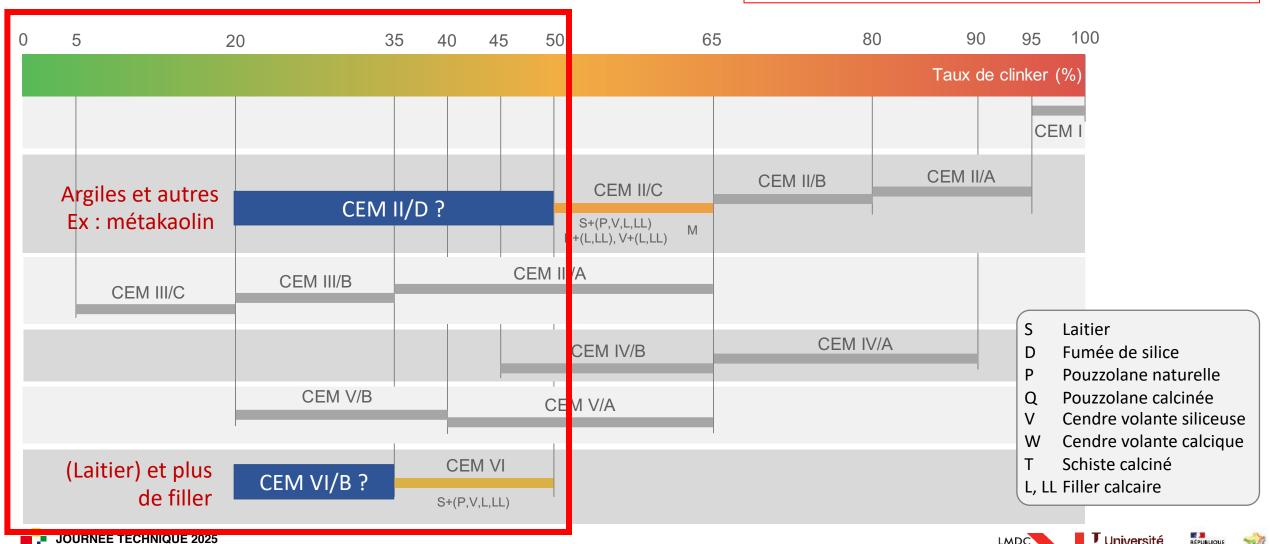

Cas 1 : réduire la quantité de clinker en jouant sur les mélanges de constituants reconnus

Liant

Nouvelle combinaison de constituants reconnus

Addition

Mélange d'additions normalisées

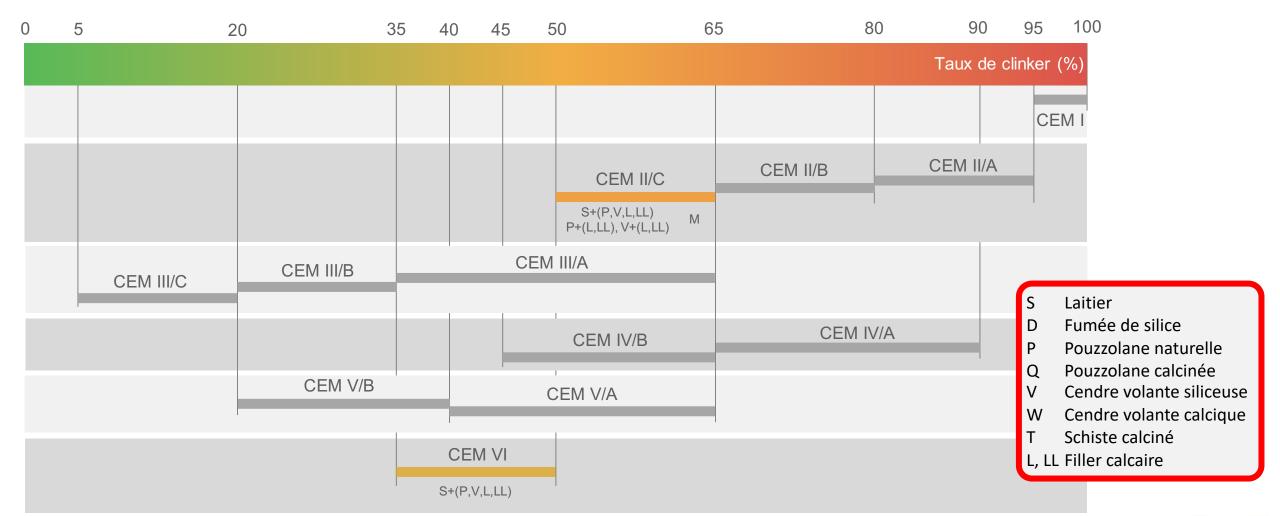

Cas 1 : réduire la quantité de clinker en jouant sur les mélanges de constituants reconnus

Liant

Nouvelle combinaison de constituants reconnus

Addition

Mélange d'additions normalisées


Cas 2 : Utiliser de nouveaux matériaux pouzzolaniques

Liant

Ciment contenant un ou plusieurs nouveaux constituants

Addition

Addition non normalisée

Cas 3 : Utiliser de nouveaux matériaux/liants s'appuyant sur des chimies différentes

Liant

Ciment s'écartant sensiblement des types définis dans des normes existantes

Addition

Addition dont les propriétés s'éloignent de la pouzzolanicité

Cas 3 : Utiliser de nouveaux matériaux/liants s'appuyant sur des chimies différentes

Liant

Ciment s'écartant sensiblement des types définis dans des normes existantes

Addition

Addition dont les propriétés s'éloignent de la pouzzolanicité

Exemples non exhaustifs

MIOM broyés

Cendres de boues de station d'épuration

Laitier d'aciérie de four électrique et de métallurgie secondaire

Résidus issus de traitement de la bauxite

Argile crue

Cas 3 : Utiliser de nouveaux matériaux/liants s'appuyant sur des chimies différentes

- Géopolymères à base d'argiles calcinées ou de cendres volantes activés par des silicates alcalins
- Liant phospho-magnésien
- Liant durcissant sous l'effet de la carbonatation
- ...

Liant

Ciment s'écartant sensiblement des types définis dans des normes existantes

Addition

Addition dont les propriétés s'éloignent de la pouzzolanicité

Exemples non exhaustifs

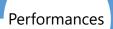
MIOM broyés

Cendres de boues de station d'épuration

Laitier d'aciérie de four électrique et de métallurgie secondaire

Résidus issus de traitement de la bauxite

Argile crue



• Caractéristiques mécaniques, physiques et chimiques

Environnement

Structures

Caractéristiques		Méthodologies et Procédés d'évaluation			
Caractérisation physique, chimique et minéralogique de l'addition ou du liant					
	Distribution granulométrique	ISO 8130-13, ISO 13317-1			
Finesse	Taille limite supérieure	NF EN 933-1, NF EN 459-2, NF EN 933-10			
	Surface spécifique	NF EN 196-6, ISO 9277			
Masse volumique absolue		NF EN 1097-7, NF P 15 435			
Morphologie		ISO 13322-1, ISO 14187			
	Eléments majeurs	NF EN 196-2			
	Perte au feu	NF EN 196-2			
	Teneur en carbone organique total (COT)	NF EN 13639			
	Teneur en SO ₃	NF EN 196-2			
Composition chimique	Teneur en chlorure	NF EN 196-2			
	Teneur en alcalin (Na ₂ O _{eq})	NF EN 196-2			
	Teneur en calcium libre Teneur en sulfure	NF EN 451-1 NF EN 196-2			
	Teneur en suiture Teneur en eau et en gaz	NF EN 196-2 NF EN 13639			
Composition minéralogique	Terreur en eau et en gaz	DRX, ATD/ATG, EDS			
Composition inineralogique		DRA, ATD/ATG, EDS			
Evaluation de la réactivité et des propriétés d'usage	e de l'addition ou du liant				
Demande en eau		NF EN 196-3, NF P18-513, NF EN 1015-3, NF EN 450-1, NF P18-508			
Fausse prise ou raidissement		NF P18-363			
Début de prise et fin de prise		NF EN 196-3			
Chaleur d'hydratation et/ou de réaction		NF EN 196-9, NF EN 196-8			
Résistance à jeune âge et à long terme des liants		NF EN 196-1			
Résistance et Indice d'activité des additions		NF EN 196-1			
Réactivité des constituants du ciment - Test R3		ASTM C1897-20			
Stabilité		NF EN 196-3			
Retrait et gonflement		NF P15-433			

Caractéristiques

Caractérisation physique, chimique et minéralogique

Finesse

Masse volumique absolue

Morphologie

Composition chimique

Composition minéralogique

Evaluation de la réactivité et des propriétés d'usage de l'

Demande en eau

Fausse prise ou raidissement

Début de prise et fin de prise

Chaleur d'hydratation et/ou de réaction

Résistance à jeune âge et à long terme des liants

Résistance et Indice d'activité des additions

Réactivité des constituants du ciment - Test R3

Stabilité

Retrait et gonflement

Cas des cendres de biomasse

Eléments majeurs

Perte au feu

Teneur en carbone organique total (COT)

Teneur en SO₃

Teneur en chlorure

Teneur en alcalin (Na₂O_{ea})

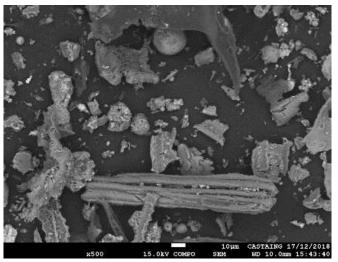
Teneur en calcium libre

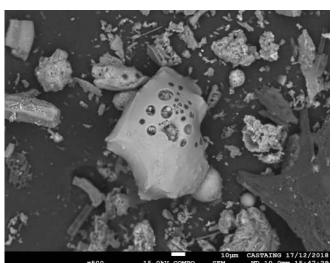

Teneur en sulfure

Teneur en eau et en gaz

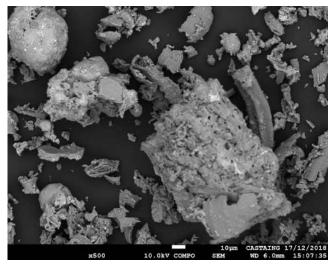
Cas du verre de recyclage

NF EN 196-2 NF EN 196-2

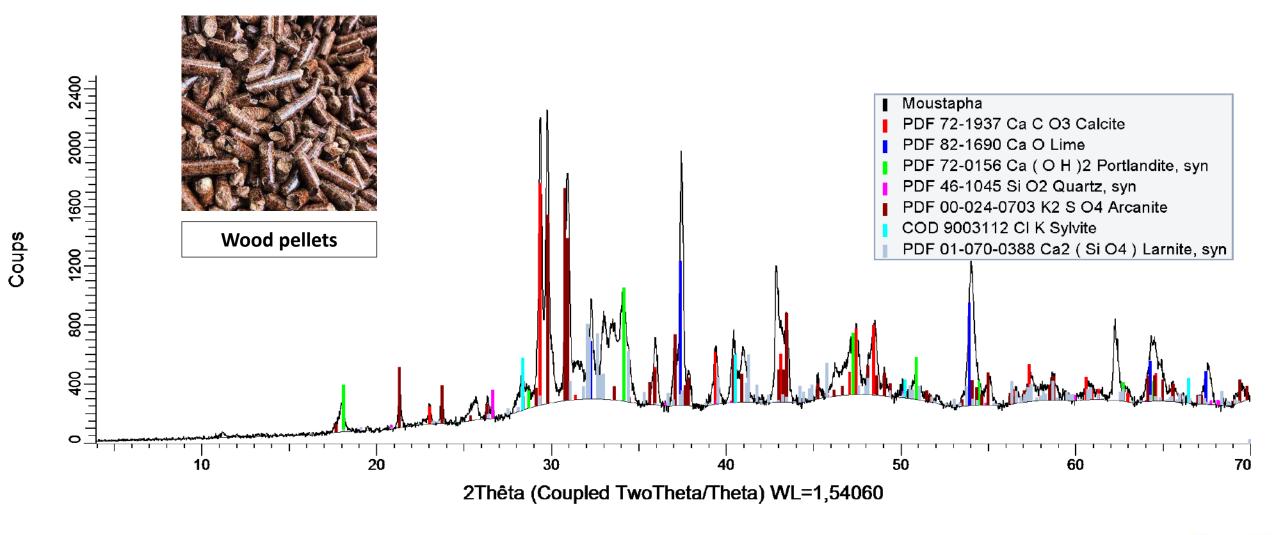




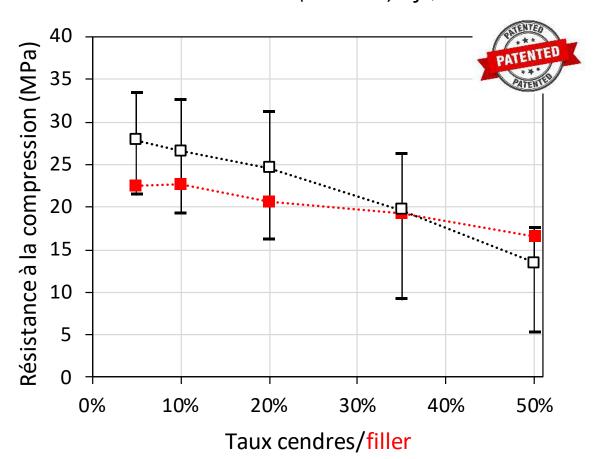
Cendres de pellets de bois : composition et morphologie



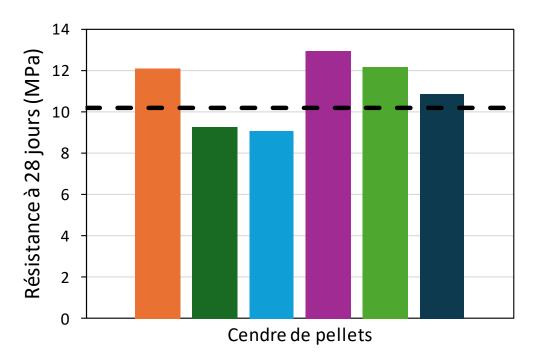
Wood pellets



Cendres de pellets de bois : minéralogie



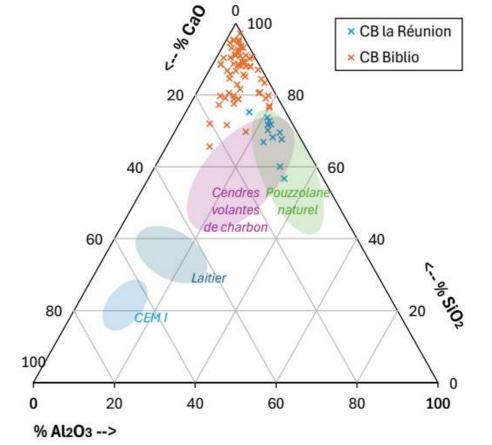
Créat


Activation du laitier de haut-fourneau

Filler vs. Cendres (5% CEM I) - $f_{c,90d}$

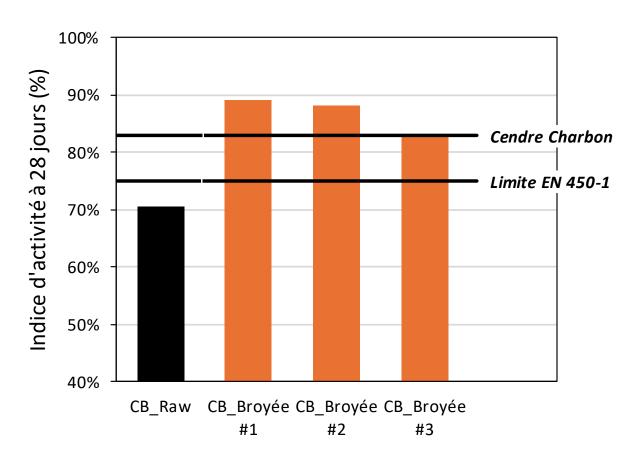
Mortier CSS (75% LHF; 15% Plâtre; 5% CEM I; 5% Cendres Pellets)

Wood pellets



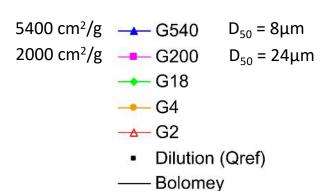
Composition: oxydes pouzzolaniques

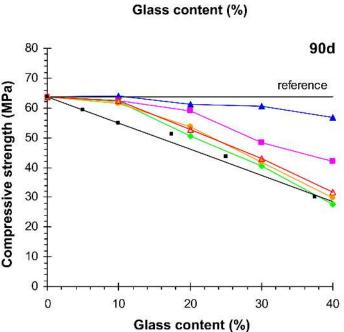
Bagasse



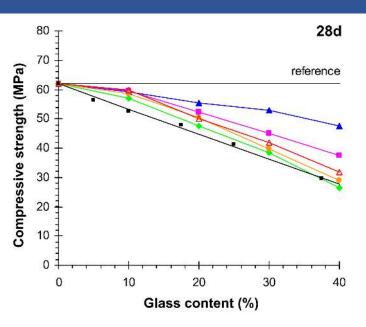
Mortier: 75% CEM I / 25% Cendre Bagasse

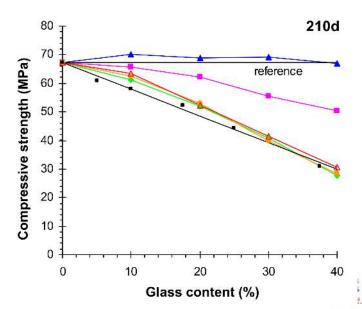
Bagasse


Verre broyé



Résistances en compression

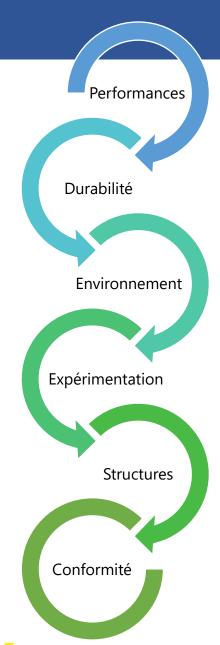

20


10

1d

reference

30

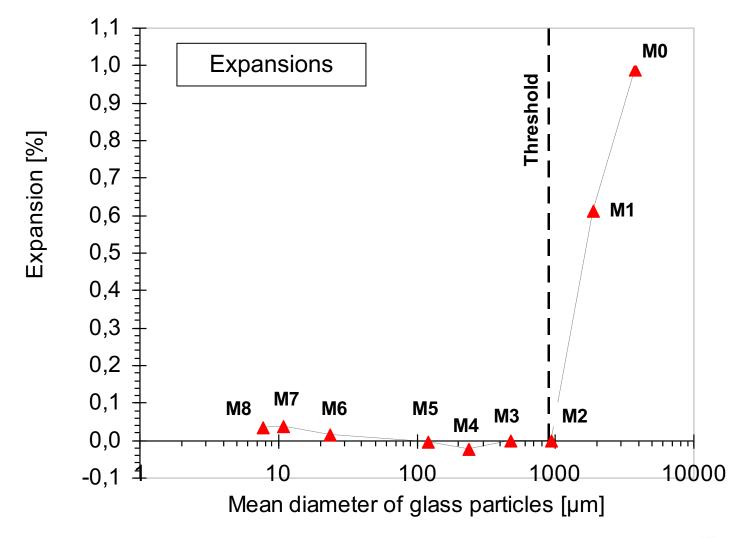


• Détermination des caractéristiques liées aux propriétés d'usage et à la durabilité des bétons

	Caractéristiques			
		Masse volumique sur béton frais		
		Consistance initiale		
		Viscosité		
	Propriétés d'usage des bétons d'essai	Maintien de consistance sur une durée d'au moins 30 minutes		
		Résistance en compression		
		Résistance en traction		
		Module d'élasticité		
		Passivation des armatures		
XC, XD, XS	Protection des armatures vis-à-vis des risques de corrosion	Résistance à la carbonatation		
		Résistance à la pénétration des chlorures		
XF	Résistance au gel et aux sels de déverglaçage			
		Résistance à l'eau de mer		
XA	Résistance aux attaques chimiques	Résistance aux attaques sulfatiques externes		
7.7	Resistance dux attaques enimiques	Résistance à la lixiviation (attaques acides et eaux pures)		
		Résistance à l'attaque par H2S		
	Compatibilité des constituants (et stabilité à long terme)			
	Prévention des risques liés à la RSI			
	Prévention des risques liés à la RAG			
	Cure			
	Effet de la température sur les performances à long terme			

Caractéristiques				
Propriétés d'usage des bétons d'essai	Consistance Viscosité Maintien de	consistance sur une durée d'au moins 30 minutes n compression n traction		
Protection des armatures vis-à-vis des risques de corrosion		Passivation des armatures Résistance à la carbonatation Résistance à la pénétration des chlorures		
Résistance au gel et aux sels de déverglaçage				
Résistance aux attaques chimiques	Résistance à	l'eau de mer ux attaques sulfatiques externes la lixiviation (attaques acides et eaux pures) l'attaque par H2S		
Compatibilité des constituants (et stabilité à				
Prévention des risques liés à la RSI	Cas du verre de			
Prévention des risques liés à la RAG				
Cure Effet de la température sur les performances	recyclage			

Verre broyé

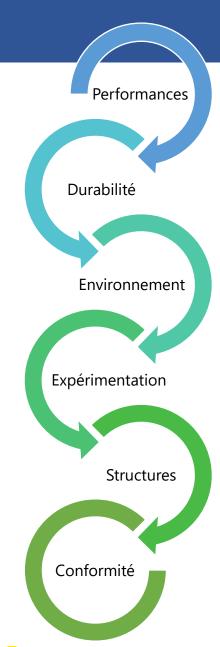


Réaction alcali-granulats

Mortar bars containing 20% of different glass particle sizes (cure: 78 weeks -60°C-100%HR)

Chemical analysis (%)

SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO
68.7	2.0	0.3	12.4
TiO ₂	K ₂ O	Na ₂ O	SO ₃
0.3	0.6	13.5	0.2



Evaluation Environnementale et Sanitaire	
	Chrome VI
	Radioactivité des matériaux et produits de construction
Evaluation sanitaire	Emissions de Substances Organiques Volatiles
	Béton au contact de l'eau potable
	Déclaration Nanoparticules
	Déclaration Environnementale
Impact Environnemental	Principes régissant l'acceptabilité environnementale - au
	cours de la durée de vie/service de l'ouvrage et en fin de vie

Durabilité

Environnement

Expérimentation

Structures

Conformité

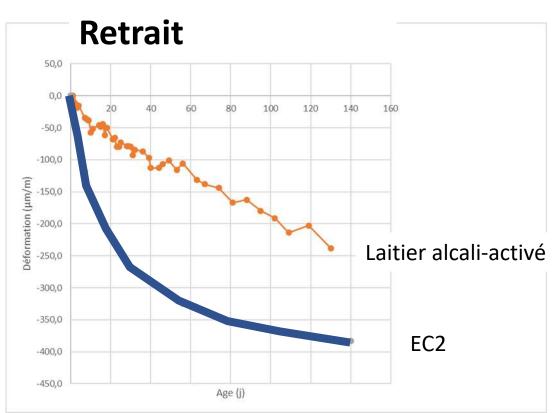
Nouveaux liants	Cat. 1a	Cat. 1b	Cat. 2a	Cat. 2b	Cat. 3
Nouvelles additions	1		2		3
Masse volumique	Χ	Χ	Χ	Χ	Х
Résistance en traction				Χ	Х
Module d'élasticité		Х	Х	Х	Х
Evolution des propriétés dans le temps	Х	Х	Х	Х	Х
Relation contrainte-déformation		Х	Х	Х	Х
Coefficient de dilatation thermique				Х	Х
Retrait et fluage				Х	Х
Résistance au cisaillement					Х
Adhérence acier-béton – caract. Adhérence (pull-out)		Х	Х	Х	Х
Adhérence acier-béton – enrobage mini (beam test)		Х	Х	Х	Х
Reprises de bétonnage		Х	Х	Х	Х
Comportement au feu					
Propriétés thermiques					Х
Propriétés thermo-mécaniques		Χ	Х	Χ	Х
Ecaillage	Χ	Χ	Χ	Χ	Χ
Comportement au séisme					
Ductilité				X	Х
Comportement cyclique				Х	Х
Pull-out cyclique		Χ	Х	Χ	Χ

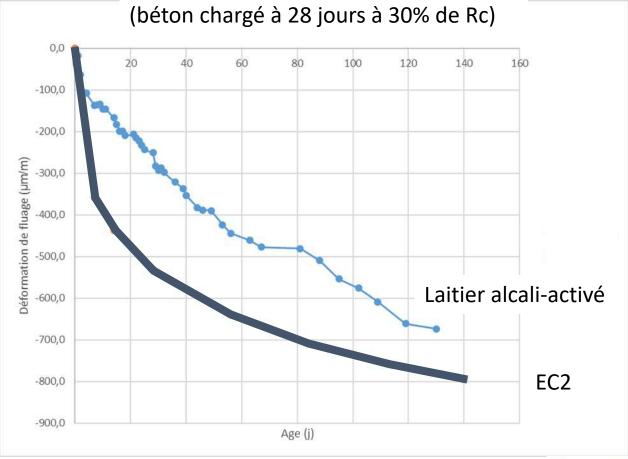
Environnement

Expérimentation

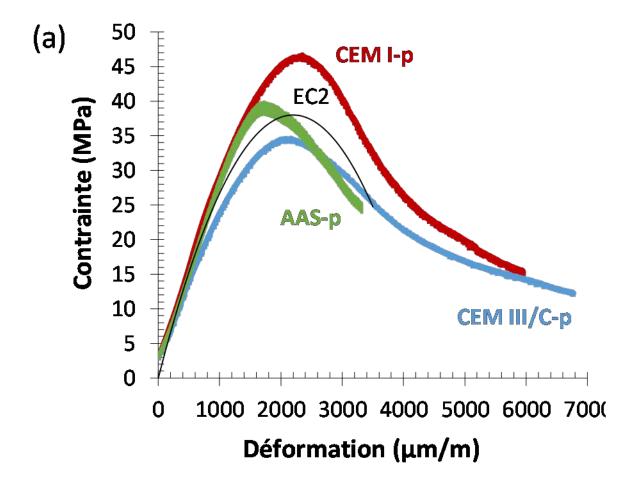
Structures

Nouveaux lia	ants Cat. 1	a Cat. 1b	Cat. 2a	Cat. 2b	Cat. 3
Nouvelles additi	ions 1		2		3
Masse volumique	X	X	Χ	X	X
Résistance en traction				Χ	Χ
Module d'élasticité		Χ	Х	Χ	Χ
Evolution des propriétés dans le temps	Х	Х	Х	Х	Х
Relation contrainte-déformation		Х	Х	Х	Х
Coefficient de dilatation thermique				Х	Х
Retrait et fluage	Cas des liants		nts	Х	Х
Résistance au cisaillement	Cus	4 C 5 11 G	1105		Х
Adhérence acier-béton – caract. Adhérence (pul	alcali-activés			Х	Х
Adhérence acier-béton – enrobage mini (beam	<u> </u>			Х	Х
Reprises de bétonnage		Х	Х	Х	Х
Comportement au feu					
Propriétés thermiques					Х
Propriétés thermo-mécaniques		X	Х	Χ	Χ
Ecaillage	X	X	Χ	Χ	Χ
Comportement au séisme					
Ductilité				Х	Х
Comportement cyclique				Χ	Χ
Pull-out cyclique		X	Χ	Х	Х

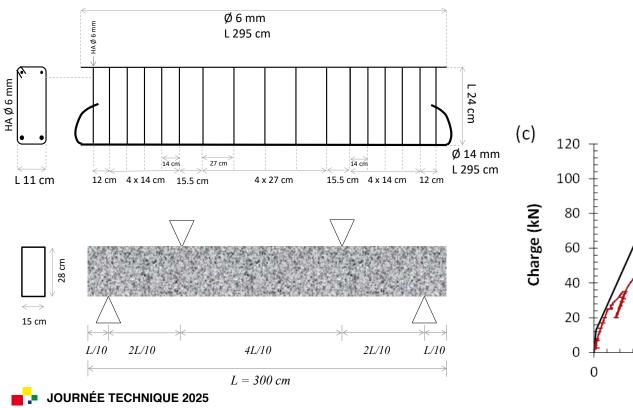


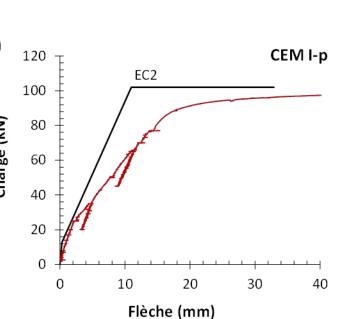


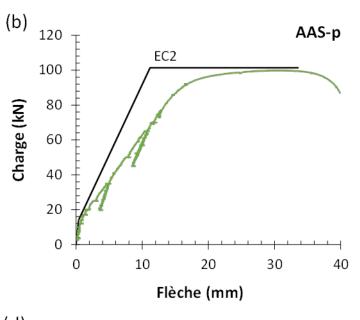
Fluage

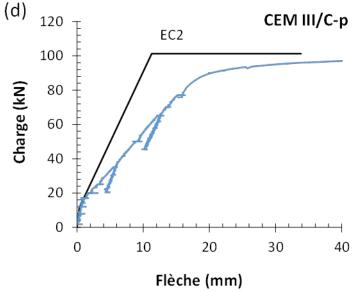


Relation contrainte-déformation

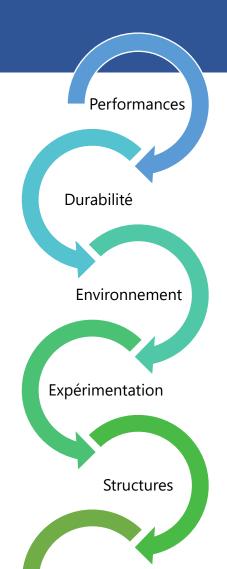








Adhérence acier-béton – poutre armée



• Expérimentation à échelle industrielle

Cas des liants alcali-activés

Cas des liants de verre

Conformité

Liants alcali-activés

Voussoirs de tunnels

Paris Suburban Metro Expansion Project (>200km)

	kg/m3
AAS binder	450
Total water	171
Sand 0/4	690
Gravel 4/20	1005
Metallic fibers	44

Liants de verre

Parking Lot

Cycle Track

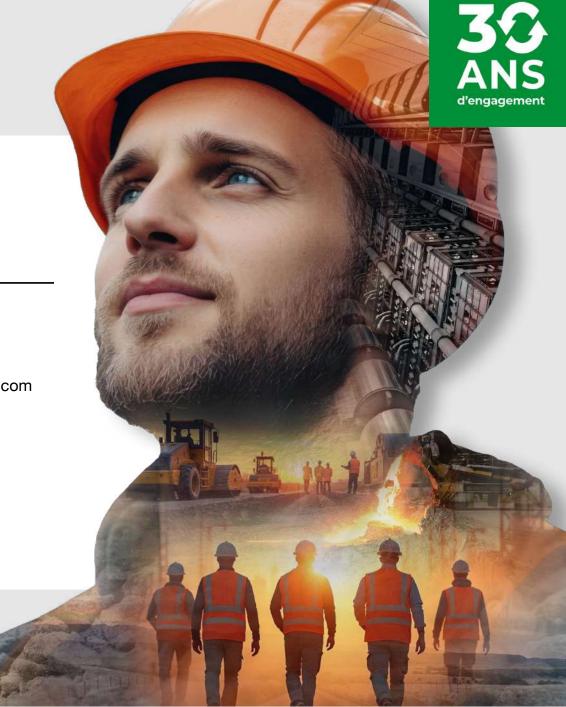
Urban Biking Lanes

MERCI POUR VOTRE ATTENTION

Rachida Idir

rachida.idir@cerema.fr

Martin Cyr


martin.cyr@utoulouse.fr

Loïc Divet

loic.divet@outlook.com

