



# D'ACIERIE ELECTRIQUE INOX DANS LE BETON

Expérimentations menées au L2MGC sur les granulats de laitier d'Ugitech SA

Gildas ADEGOLOYE, Anne-Lise BEAUCOUR Sophie ORTOLA, Albert NOUMOWE

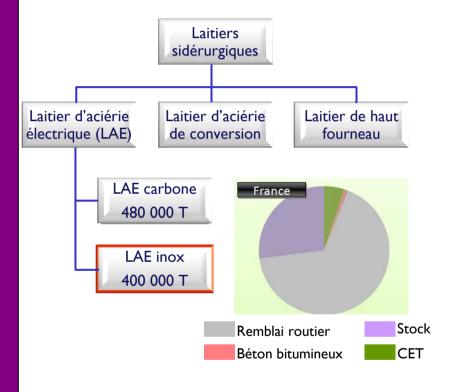






# **SOMMAIRE**

- □ CONTEXTE ET OBJECTIF
- ☐ LES LAITIERS D'ACIERIE ELECTRIQUE INOX
- BETONS DE GRANULATS DE L.A.E INOX
- CONCLUSIONS




CONTEXTE

GRANULATS DE LAE INOX BETON DE GRANULATS LAE INOX

CONCLUSION

# ✓ Contexte et objectif



#### Pour l'industrie sidérurgique

- Coût élevé de traitement et de stockage
- Problème environnemental

#### Pour le domaine de la construction

- Développement durable : préservation des ressources en granulats naturels
- Economie du coût de la construction (ressources locales)

#### **Objectif:**

Valorisation des granulats de laitier d'aciérie inox dans le béton



CONTEXTE

GRANULATS DE LAE INOX BETON DE GRANULATS LAE INOX

# Démarche expérimentale

#### Caractérisation des granulats de laitier LAE inox (conformité à la norme EN 12620)

- Densité, porosité, résistance à la fragmentation
- Analyse chimique, minéralogie (DRX, MEB + EDS)



#### Bétons ordinaire et à hautes performances

Taux de substitution des granulats silico-calcaires par des granulats de laitier (0%, 50% et 100%)

#### Performances mécaniques

Résistances à la rupture, module diYoung (28, 90 et 365 jours)

#### Facteurs de durabilité

Porosité à l'eau, perméabilité au gaz, stabilité dimensionnelle

Afoco 2014



CONCLUSION

# Propriétés physiques



Laitier EAF inox Couleur gris foncé

| Granulat              | Densité<br>réelle | Porosité<br>(%) | Los Angeles (%) |  |
|-----------------------|-------------------|-----------------|-----------------|--|
| Silico-<br>calcaire   | 2,46              | 4,2             | 30              |  |
| Laitier EAF           | 2,79              | 7,2             | 23              |  |
| Laitier AOD stabilisé | ) X <del>(</del>  | 8,4             | 16              |  |

Granulats denses et résistants à la fragmentation mais un peu plus poreux



Laitier AOD stabilisé Couleur vert claire

# Composition chimique

| Éléments                           | Laitier EAF | Laitier AOD |
|------------------------------------|-------------|-------------|
| CaO (%)                            | 41,7        | 58,4        |
| SiO <sub>2</sub> (%)               | 34,7        | 26,4        |
| MgO (%)                            | 9,1         | 2,1         |
| Al <sub>2</sub> O <sub>3</sub> (%) | 6,3         | 2,1         |

Indice de basicité

■ Laitier EAF inox: 1,3

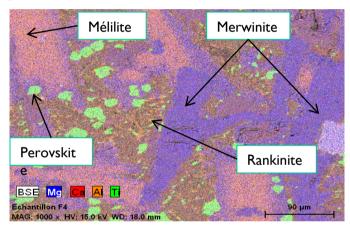
Laitier AOD stabilisé: 2,3



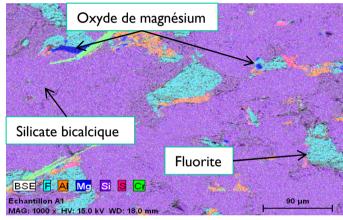
CONCLUSIO

# Composition chimique (suite)

| Eléments                           | Granulat de<br>laitier EAF inox | Granulat de laitier<br>AOD stabilisé | Recommandations EN 12620 |
|------------------------------------|---------------------------------|--------------------------------------|--------------------------|
| Chlorure soluble dans l'eau (%)    | 0,0005                          | 0,0020                               | ≤ 0,01                   |
| Soufre total (%)                   | 0,26                            | 0,18                                 | ≤                        |
| Sulfates solubles dans l'acide (%) | 0,02                            | 0,21                                 | ≤ 0,8                    |
| CaO libre (%)                      | 0,07                            | 0,07                                 | -                        |




- Pas de perturbation de la prise et risque limité de corrosion des armatures
- Risque limité de détérioration des parements de béton (taches de rouille ou éclatement superficiel)
- Risque limité de gonflement lié à la formation d'ettringite ou à l'hydratation de la chaux
- CaO libre (EAF et AOD) < CaO libre LAC (4 à 10%)




# Composition minéralogique

#### Objectif: Recherche d'éventuelles phases minérales instables: Silicate bicalcique γ, CaO libre et MgO libre



Cartographie MEB-EDS du laitier EAF Inox



Cartographie MEB-EDS du laitier AOD

- CaO libre ni détecté en DRX ni par l'étude au MEB-EDX
- MgO libre (Periclase) non observé dans les EAF inox et en proportion minoritaire dans les AOD
- Silicate bicalcique présent dans les AOD stabilisé mais pas sous sa forme gamma (DRX)



NTEXTE GRANULATS DE LAE INOX

#### **BETON DE GRANULATS LAE INOX**

CONCLUSION

#### √ Formulation des bétons

|                                  | ВНР       | ВО        |
|----------------------------------|-----------|-----------|
| E/C                              | 0,3       | 0,55      |
| CEM I 52,5 ( kg/m <sup>3</sup> ) | 500       | 370       |
| Granulat 4/20 (kg/m³)            | 1053      | 1048      |
| Granulat 0/4 (kg/m³)             | 650       | 700       |
| Eau (kg/m³)                      | 150       | 204       |
| Superplastifiant (kg/m³)         | 3,7       | 0         |
| Consistance                      | Classe S4 | Classe S4 |

- Taux de substitution des granulats silico-calcaires par des granulats de laitier (0%, 50% et 100%)
- Volume constant des gros granulats
- Type de granulats de llaitier :: EAF, AOD AOD stabilisé let mélange (EAFD) AOD)

#### **Intérêts BHP**

- Meilleure résistance mécanique de la matrice cimentaire
- Faciès de rupture trans-granulaires
- Mis en évidence du rôle des granulats

#### Intérêts BO

- Comparaison avec les bétons courants
- Confirmer ou infirmer les résultats des BHP



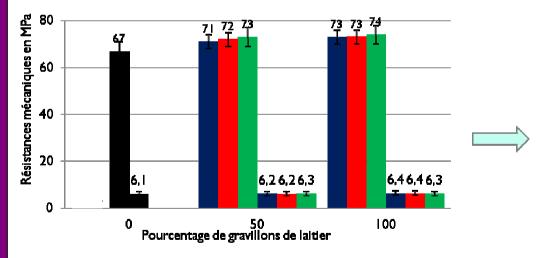
ONTEXTE GRA

#### GRANULATS DE LAE INOX

#### **BETON DE GRANULATS LAE INOX**

CONCLUSION




Essai de Compression

### ✓ Résistances à la compression et à la traction à 28 jours

- Normes NF EN 12390-2 et NF EN 12390-3
- 6 éprouvettes 16x32 cm par formulation étudiée
- Taux de chargement 0,5 MPa/s



Essai de traction par fendage

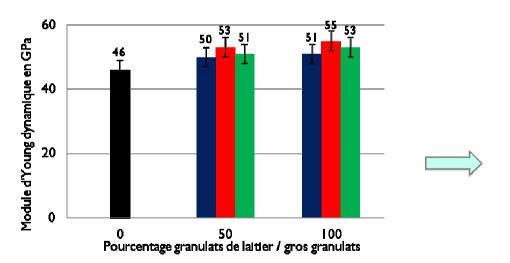


■Béton de granulat de laitier EAF ino×

■Béton de granulats de laitier EAF inox + AOD stabilisé

■Béton de granulat de laitier AOD stabilisé

■ Béton de granulat silico-calcaire


Meilleures résistances pour les bétons de granulats de LAE inox :

- Résistance des granulatss de laitier (LA ≤ 25)
- Surface rugueuse et poreuse des granulats de laitier

CONCLUSION

## ✓ Module d'Young à 28 jours

- 3 disques 5x15 cm par formulation et par âge
- Etuvage des disques à 80°C pendant: 30 jours
- Impulsion vibratoire (temps de propagation)



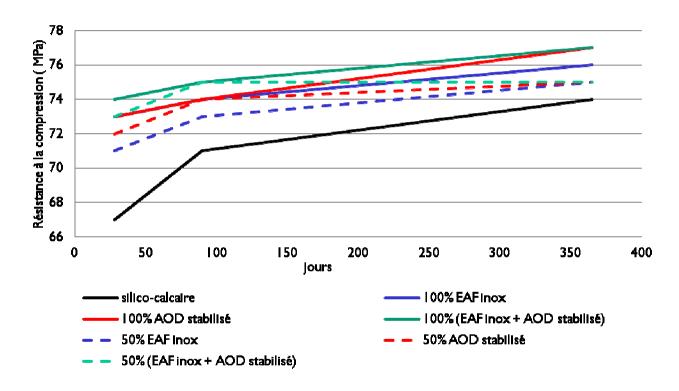
- ■Béton de granulat de laitier EAF inox
- Béton de granulat de laitier AOD stabilisé
- ■Béton de granulat EAF inox+ AOD stabilisé
- Béton de granulat silico-calcaire



Mesures ultrasoniques

Les bétons de granulats de laitier sont plus rigides que les bétons de granulats silico-calcaires

- Gain de 10% pour les bétons de granulats: 100% laitier EAF
- Gain de 20% pour les bétons de granulats 100 % laitier AOD




ONTEXTE GRANULATS DE LAE INOX

#### **BETON DE GRANULATS LAE INOX**

CONCLUSION

# Conservation dans le temps des résistances mécaniques



- Amélioration dans le temps des résistances à la compression de tous les bétons
- Augmentation des résistances de 10 % pour les BHP de granulats silico-calcaires, 4 à 5 % pour les BHP de granulats de LAE inox entre 28 et 365 jours



CONCLUSIO

#### √ Indicateurs de durabilité

#### Porosité à l'eau

■ NormerNF: ENF E2390-790-7

■ 9=échantillons||pansformfulation|

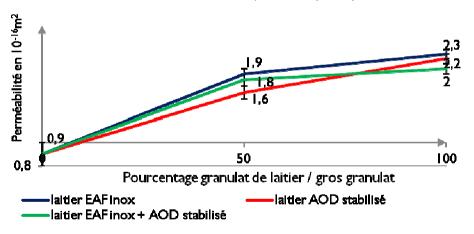
■ Saturation à d'eau pendant 24 hêt desures

■ Etuvāgevjusqu'à masse aconstante ante

| BHP de                                       | granulats : | Silico-<br>calcaire | Laitier EAF inox |      | Laitier AOD stabilisé |      | Laitier EAF inox<br>+ AOD stabilisé |      |
|----------------------------------------------|-------------|---------------------|------------------|------|-----------------------|------|-------------------------------------|------|
| Pourcentage volumique de granulat de laitier |             | 0%                  | 50%              | 100% | 50%                   | 100% | 50%                                 | 100% |
| Porosité<br>(%)                              | Moyenne     | 9,9                 | 10,9             | 12,4 | 11,1                  | 12,1 | 11,1                                | 12,4 |
|                                              | Écart-type  | 0,52                | 0,71             | 0,29 | 0,47                  | 0,38 | 0,67                                | 0,63 |

- Porosité supérieure à celle des bétons de granulats silico-calcaires
- Porosité convenant pour classes d'environnement courantes
- Porosité intéressante vis-à-vis des propriétés thermiques




# √ Indicateurs de durabilité (Suite)



Mesure de perméabilité

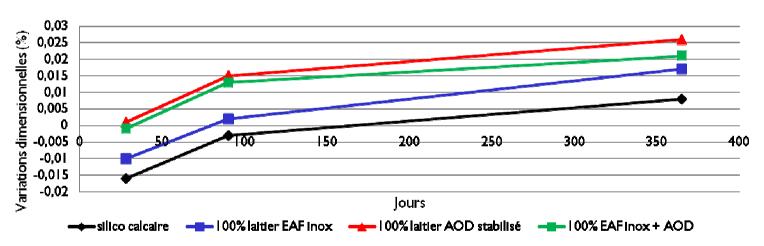
#### Perméabilité au gaz

- Recommandations LCPC
- 3 disques 5 x 15 cm par formulation étudiée
- Etuvage à 80°C des disques pendant 30 jours
- Injection d'azote dans le disque et régime permanent



- Faible augmentation de la perméabilité au gaz avec le pourcentage de granulats de laitier
- Perméabilité convenant aux classes d'environnement courantes




CONCLUSIO



Mesure de gonflement

#### Stabilité dimensionnelle

- A partir de la norme NF P18-454
- 3 éprouvettes 7 x 7 x 28 cm conservées à l'eau
- 24 mesures par éprouvettes et par échéance



- Diminution (EAF) et suppression (AOD) du retrait à 28 jours
- Léger gonflement des bétons de granulats de laitier
- Variations dimensionnelles l'égèrement inférieures aux limites admissibles (FD P18-456)



**CONCLUSIO** 

Pour une valorisation des granulats de LAE inox dans le béton, les résultats sont très encourageants

- Augmentation de 5% des résistances à la compression des bétons de granulats de laitiers notamment pour les bétons de granulats 100 % laitier
- Augmentation du module d'élasticité des bétons de granulats de laitier: gain de 10% pour les laitiers de four et 20% pour les laitiers AOD.
- Valeurs de porosité et de perméabilité convenant aux classes d'environnement courantes
- Diminution du retrait avec l'augmentation de la fraction volumique de granulats de laitier substitués.
- Variations dimensionnelles des bétons de granulats de laitier AOD légèrement inférieures aux valeurs admissibles.
- Porosité intéressante pour les propriétés d'isolation de ce béton



# Merci de votre attention

gildas.adegoloye@u-cergy.fr

